- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Carani, Lucas Braga (2)
-
Eze, Vincent Obiozo (2)
-
Okoli, Okenwa Izeji (2)
-
Iwuagwu, Chetanna (1)
-
Martin, Terrencia Deniqua (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Carani, Lucas Braga; Eze, Vincent Obiozo; Iwuagwu, Chetanna; Okoli, Okenwa Izeji (, Journal of Composites Science)Recent developments in sensing technologies have triggered a lot of research interest in exploring novel self-powered, inexpensive, compact and flexible pressure sensors with the potential for structural health monitoring (SHM) applications. Herein, we assessed the performance of an embedded mechanoluminescent (ML) and perovskite pressure sensor that integrates the physical principles of mechanoluminescence and perovskite materials. For a continuous in-situ SHM, it is crucial to evaluate the capabilities of the sensing device when embedded into a composite structure. An experimental study of how the sensor is affected by the embedment process into a glass fiber-reinforced composite has been conducted. A series of devices with and without ML were embedded within a composite laminate, and the signal responses were collected under different conditions. We also demonstrated a successful encapsulation process in order for the device to withstand the composite manufacturing conditions. The results show that the sensor exhibits distinct signals when subjected to different load conditions and can be used for the in-situ SHM of advanced composite structures.more » « less
An official website of the United States government
